Adv Ther. 2005 Nov-Dec;22(6):659-78.
Hyperbaric oxygen in the treatment of patients with cerebral stroke, brain trauma, and neurologic disease.
Al-Waili NS, Butler GJ, Beale J, Abdullah MS, Hamilton RW, Lee BY, Lucus P, Allen MW, Petrillo RL, Carrey Z, Finkelstein M.
Life Support Technologies, Inc., and NewTechnologies, Inc., The Mount Vernon Hospital, Westchester Medical Center, New York Medical College, New York, USA.
Abstract
Hyperbaric oxygen (HBO) therapy has been used to treat patients with numerous disorders, including stroke. This treatment has been shown to decrease cerebral edema, normalize water content in the brain, decrease the severity of brain infarction, and maintain blood-brain barrier integrity. In addition, HBO therapy attenuates motor deficits, decreases the risks of sequelae, and prevents recurrent cerebral circulatory disorders, thereby leading to improved outcomes and survival. Hyperbaric oxygen also accelerates the regression of atherosclerotic lesions, promotes antioxidant defenses, and suppresses the proliferation of macrophages and foam cells in atherosclerotic lesions. Although no medical treatment is available for patients with cerebral palsy, in some studies, HBO therapy has improved the function of damaged cells, attenuated the effects of hypoxia on the neonatal brain, enhanced gross motor function and fine motor control, and alleviated spasticity. In the treatment of patients with migraine, HBO therapy has been shown to reduce intracranial pressure significantly and abort acute attacks of migraine, reduce migraine headache pain, and prevent cluster headache. In studies that investigated the effects of HBO therapy on the damaged brain, the treatment was found to inhibit neuronal death, arrest the progression of radiation-induced neurologic necrosis, improve blood flow in regions affected by chronic neurologic disease as well as aerobic metabolism in brain injury, and accelerate the resolution of clinical symptoms. Hyperbaric oxygen has also been reported to accelerate neurologic recovery after spinal cord injury by ameliorating mitochondrial dysfunction in the motor cortex and spinal cord, arresting the spread of hemorrhage, reversing hypoxia, and reducing edema. HBO has enhanced wound healing in patients with chronic osteomyelitis. The results of HBO therapy in the treatment of patients with stroke, atherosclerosis, cerebral palsy, intracranial pressure, headache, and brain and spinal cord injury are promising and warrant further investigation.